Virtual research and development platform.

Bridge Simulators
Fully open bridge simulator with environment simulation, virtual reality visualization, ship dynamics, and integrated with a full virtual ship simulation. It can be connected to various ECDIS systems. Second connectable commercial bridge simulator from Wärtsilä (Type: Wärtsilä Voyage/Transas Navi-Trainer Professional 5000 (NTPRO 5000)). For the environment (target ships) the simulators are coupled with the maritime traffic simulation of HLA. Support of model, software and hardware-in-the-loop experiments.

Multi-agent and AI-based configurable maritime simulation for generating test cases for system verification and validation, investigations of traffic management concepts as well as efficiency and various other applications. The implemented ship behavior including stochastic influences and non-deterministic processes can be used to simulate realistic traffic (i. e. situations that may only exist digitally). It is also possible to “replay” real recorded situations, e. g. by importing historical situations based on AIS data. The connection of external systems and other simulators is achieved by using the distributed high-level architecture (HLA) infrastructure. The MTS offers faster than real-time simulations (Fast Time) if required. Support of model, software and hardware-in-the-loop experiments.


State-of-the-art ECDIS and VTS systems and open source systems Electronic Prototype Display (EPD) combined with traffic and bridge simulators, which are used as environments for verification and validation of assistance systems and for experiments on the design of human-machine interfaces.

Multibody Simulator

Multibody simulation for the simulation of dynamic physical systems (crane operations etc.).

Sensor Simulation

Simulation of typical sensor systems and data processing. The sensor data can be manipulated and distorted for system tests.

Full Ship Simulation

Currently, an FMI-based complete virtual representation of a ship with all aggregates is being developed. Support of model, software and hardware-in-the-loop experiments.

Co-Simulation Platform and Control

HLA- and FMI-based co-simulation platform for the integration of different simulators. A scenario description language is used to configure the connected simulation platform. Support for importance sampling and splitting to identify rare events.


A unique research infrastructure in the German Bight.


Availability of most major ECDIS systems, which we can configured either for use in mobile bridge systems (i. e. bridge systems embedded in transport cases), or in two transportable sea containers (with 180-degree views over embedded windows) which can be used as a second bridge for testing purposes on a ship or as a shore-based VTS or control room structure.

Research platforms

Availability of the fully automatable research boat “Josephine” and cooperation with the ICBM for fleet experiments. The “Josephine” offers state-of-the-art commercial sensors and communication technology, and all data is available as bi-directional data steam. Parts of our system are installed on board the “ATAIR” of the Federal Maritime and Hydrographic Agency of Germany (BSH). Support of hardware-in-the-loop experiments.

Reference waterway

Permanent sea surveillance based on heterogeneous sensor technology. The waterway provides a continuous data stream of sensor data and broadband communication via satellite and LTE, enabling real-time monitoring. Furthermore, we are able to expand the monitored sea area according to your requirements, and we remain flexible in terms of data distribution to your specific application needs. It includes dense monitoring of the outer Elbe area between Cuxhaven and Brunsbüttel (including locks of the Kiel Canal) and AIS data in the Cuxhaven, Heligoland and Wilhelmshaven areas.

Test Area for Autonomous Systems Testing

Test area in front of the Jade-Weser-Port (Schillig-Reede) for onshore experiments and approach experiments to the harbor and the offshore test area west of Heligoland.

Research Ports

Cuxhaven and Wilhelmshaven provide a monitoring (laser, radar, camera) and communication infrastructure for experiments for harbor maneuvers such as mooring.

Sensor Systems

Innovative and state-of-the-art sensors (MODAR, radar, LIDAR)

Data and Service Platform

Complete online access to all sensor data of ships, port and shore side. Provides error injection for experiments. Data is standardized using S-100 data models and can be transcoded into NMEA and other standards.


Data basis for verification and validation

Near-Collision Database

Database of real traffic situations with typical maneuvers and encounters. The database provides a classification of crossing, frontal, and overtaking maneuvers. The database provides ground truth for risk analysis and assessment.

Scenario Database

The scenario database contains scenarios for the verification and validation of your future maritime systems. These scenarios can be tailored to different “Systems-under-Test” (SuT) and their requirements, and cover both “normal” situations and “rare events”. To generate these scenarios, analytical knowledge as well as machine learning methods and real data collected by the physical testbed are used.

High-Precision Charts

These services are under development. Currently, a high-definition 3D representation of the reference waterway is being created.


To arrange a consultation or workshop, contact us.

caret-down caret-up caret-left caret-right
Prof. Dr.-Ing. Axel Hahn
OFFIS Member of the Board; Chair Executive Board of Division Transportation
+49 441 9722-294

+49 441 798-4472

Dr. rer. nat. André Bolles

OFFIS Director R+D Division Transportation

+49 441 9722-206

+49 441 798-4472

Dr.-Ing. Sebastian Feuerstack
OFFIS Group Manager R&D Division Transportation, Senior Researcher
+49 441 9722-509

+49 441 798-4472


Virtual research and development platform.

Digitalization is going to change our way to operate, navigate, communicate and control maritime systems. Digitalization fosters disruptive innovations, which lead to new thinking, products and finally business models. Opportunities for the maritime industry are countless. Global competition is fierce but full of chances.Four lead applications are identified by systematically analyzing the current position of the industry and by reviewing the actual normative background in joined workshops with the industry. The applications are detailed and discussed with respect to other global activities, relevant technologies and research activities.